Chemistry

Matter in Our Surroundings


To Study the Properties of a Colloid


If we shake some soap powder with water in a beaker, we get a colloidal soap solution which is not perfectly transparent, it is somewhat translucent. The soap particles cannot be seen by us. If the soap solution is kept for some time, the soap particles do not settle down (showing that it is quite stable). If we filter the soap solution, the whole solution passes through the filter paper and no residue is left behind (showing that it cannot be separated by filtration). All these observations indicate that soap and water mixture is a true solution. The scattering of light by a soap solution and the examination of soap solution under a high power microscope, however, show that soap solution is not a true solution. This point will become more clear from the following discussion.
In a true solution (like sugar solution), the solute particles are so small that they cannot scatter (or reflect) light rays falling on them. For example, if a beam of light (from a torch) is put on a true solution (say, sugar solution) kept in a beaker in a dark room, the path of light beam is invisible inside the solution when seen from the side (see Figure 32). The beam of light can become visible only when the solute particles are big enough to reflect light falling on them. Since the particles of a true solution do not scatter light, we conclude that they must be very, very small.
In a colloidal solution (or colloid), the particles are big enough to scatter light. This can be shown as follows. If a beam of light is put on a colloidal solution (say, soap solution), kept in a beaker in a dark room, the path of light beam is illuminated and becomes visible when seen from the side (see Figure 33).The path of light beam becomes visible because the colloidal particles are big enough to scatter light falling on them in all the directions. This scattered light enters our eyes and we are able to see the path of light beam.
The scattering of light by colloidal particles is known as Tyndall effect. The scattering of light by colloidal solutions tells us that the colloidal particles are much bigger than the particles of a true solution and hence colloidal solutions are not true solutions. So, a true solution can be distinguished from a colloidal solution by the fact that a true solution does not scatter a beam of light passing through it but a colloidal solution scatters a beam of light passing through it and renders its path visible. In other words, a true solution does not show Tyndall effect but a colloidal solution shows Tyndall effect.
The particles of some of the colloidal solutions can be seen through a high power microscope. For example, if a drop of milk is examined under microscope, we can see the small particles of fat floating in the liquid. This observation shows that colloids are heterogeneous in nature, though they appear to be homogeneous. Let us write down the properties of colloidal solutions now.

--- >>>

Notes


Matter in Our Surroundings - Notes
1. 9. Non-Metals Have Low Densities.
Show Notes
2. 7. Metals are Solids at the Room Temperature
Show Notes
3. Properties of Metals
Show Notes
4. 3. Non-Metals are Bad Conductors of Heat and Electricity.
Show Notes
5. Concentration of a Solution
Show Notes
6. 2. Metals are Ductile.
Show Notes
7. 3. Separation by a Magnet
Show Notes
8. 7. Non-Metals may be Solid, Liquid or Gases at the Room Temperature.
Show Notes
9. 11. Non-Metals Have Many Different Colours.
Show Notes
10. The Case of Solutions
Show Notes
11. 5. Non-Metals are Generally Soft
Show Notes
12. Elements
Show Notes
13. Non-Metals
Show Notes
14. Impure Substances: Mixtures
Show Notes
15. 8. Metals Generally Have High Melting Points and Boiling Points.
Show Notes
16. Is Matter Around Us Pure
Show Notes
17. 2. Separation by Centrifugation
Show Notes
18. 1. Metals are Malleable.
Show Notes
19. 8. Non-Metals Have Comparatively Low Melting Points and Boiling Points
Show Notes
20. Types of Solutions
Show Notes
21. 6. Separation by Distillation
Show Notes
22. Physical And Chemical Changes
Show Notes
23. To Study the Properties of a Suspension
Show Notes
24. Chemical Formula for daily use material
Show Notes
25. Effect of Temperature and Pressure on Solubility
Show Notes
26. 1. Non-Metals are Not Malleable. Non-Metals are Brittle.
Show Notes
27. Separation of Scrap Iron
Show Notes
28. Supply of Drinking Water in a City
Show Notes
29. properties of a Solution
Show Notes
30. Properties of a Suspension
Show Notes
31. Solutions
Show Notes
32. Pure Substances : Elements and Compounds
Show Notes
33. 3. Metals are Good Conductors of Heat and Electricity.
Show Notes
34. 4. Non-Metals are Not Lustrous (Not Shiny). They are Dull in Appearance.
Show Notes
35. Mixtures
Show Notes
36. Colloids
Show Notes
37. 1. Separation by a Suitable Solvent
Show Notes
38. Solutions, Suspensions And Colloids
Show Notes
39. Metals, Non-Metals and Metalloids
Show Notes
40. Metals
Show Notes
41. 10. Metals are Sonorous.
Show Notes
42. 2. Non-Metals are Not Ductile.
Show Notes
43. Compounds
Show Notes
44. Suspensions
Show Notes
45. 5. Separation by Chromatography
Show Notes
46. Comparison Among the Properties of Metals and Non-Metals
Show Notes
47. Differences Between Mixtures and Compounds
Show Notes
48. Chemical Changes
Show Notes
49. 2. Separation by Sublimation
Show Notes
50. Separation Of Mixture Of a Solid And a Liquids
Show Notes