Fluorine reacts with ice and results in the change:
H20(S) + F2 (g) ——-> HF(g) + HOF(g)
Justify that this reaction is a redox reaction.
Writing the O.N. of each atom above its symbol, we have,
Here, the O.N. of F decreases from 0 in F2 to -1 in HF and increases from 0 in F2 to +1 in HOF. Therefore, F2 is both reduced as well as oxidised. Thus, it is a redox reaction and more specifically, it is a disproportionation reaction.
Identify the correct statements with reference to the given reaction.
P4 + 30H– + 3H20→ PH3 + 3H2 P0–2
(a) Phosphorus is undergoing reduction only.
(b) Phosphorus is undergoing oxidation only.
(c) Phosphorus is undergoing oxidation as well as reduction.
(d) Hydrogen is undergoing neither oxidation nor reduction
While sulphur dioxide and hydrogen peroxide can act as an oxidising as well as reducing agents in their reactions, ozone and nitric acid act only as oxidants. Why?
Arrange the following metals in the order in which they displace each other from the solution of their salts.Al, Cu, Fe, Mg and Zn.
Predict the products of electrolysis in each of the folloxving:
(i) An aqueous solution of AgNO3 with silver electrodes.
(ii) An aqueous solution of silver nitrate with platinum electrodes.
(iii) A dilute solution of H2S04with platinum electrodes.
(iv) An aqueous solution of CuCl2 with platinum electrodes.
Calculate the oxidation number of phosphorus in the following species.
(a) HPO32- and (b) P043-
Balance the following redox reactions by ion-electron method.
(a) MnO4–(aq) +I–(aq) ———>Mn02(s) + I2 (s) (in basic medium)
(b) MnO4–(aq) + S02(g) ——-> Mn2+(aq) +H2S04–(in acidic solution)
(c) H2O2(aq) + Fe2+(aq) ———-> Fe3+(aq) + H2O(l) (in acidic solution)
(d) Cr2O72- (aq) + S02 (g)——> Cr3+ (aq) + SO42-(aq) (in acidic solution)
Which of the following electrodes will act as anodes, when connected to Standard Hydrogen Electrode?
(a) A13-/A1; E °= -1.66 V
(b) Fe2+ /Fe; E °= -0.44 V
(c) Cu2+/ Cu E °=34 V
(d) F2(g)/2F–(aq) E °= 2.87 V
What is standard hydrogen electrode? For what purpose it is used? What are signs of oxidation potential and reduction potential decided by using SHE (Standard hydrogen electrode)?
Which of the following statement(s) is/are not true about the following decomposition reaction?
2KCIO3 →2KC1 + 302
(a) Potassium is undergoing oxidation.
(b) Chlorine is undergoing oxidation.
(c) Oxygen is reduced.
(d) None of the species are undergoing oxidation or reduction.
In Ostwald’s process for the manufacture of nitric add, the first step involves the oxidation of ammonia gas by oxygen gas to give nitric oxide gas and steam. What is the maximum wight of nitric oxide that can be obtained starting only with 10.0 g of ammonia and 20.0 g of oxygen?
Identify the oxidant and the reductant in the following reaction.
N2H4(g) + ClO4(aq) ———–> NO(g) + Cr(aq)
Nitric acid is an oxidizing agent and reacts with PbO but it does not react with Pb02. Explain why?
Which of the following elements does not show disproportionation tendency?
(a) Cl
(b) Br
(c) F
(d) I
The exhibition of various oxidation states by an element is also related to the outer orbital electronic configuration of its atom. Atom(s) having which of the following outermost electronic configurations will exhibit more than one oxidation state in its/their compounds.
(a) 3s1
(b) 3dl4s2
(c) 3d24s2
(d) 3s23p3
Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions.
E ° values of some redox complexes are given below. On the basis of these values choose the correct option.
E ° values: Br2/Br– = +1.90; Ag+/Ag(s) = +0.80 Cu2+/Cu(s) = +0.34; I2(s)/I– = +0.54 V
(a) Cu will reduce Br–
(b) Cu will reduce Ag
(c) Cu will reduce I–
(d) Cu will reduce Br2
Justify-giving reactions that among halogens, fluorine is the best oxidant and among hydrohalic compounds, hydroiodic add is the best reductant.
Justify that the following reactions are redox reactions:
(a) CuO(s) + H2(g) —–> Cu(s) + H20(g)
(b) Fe2O3(s) +3CO(g) —-> 2Fe(s) + 3CO2(g)
(c) 4BCl3(g) +3LiAlH4(s) ——> 2B2H6(g) + 3LiCl(s) + 3AlCl3(s)
(d) 2K(s) +F2(g)——> 2K+F–(s)
Write formulas for the following compounds:
(a) Mercury (II) chloride, (b) Nickel (II) sulphate, (c) Tin (IV) oxide, (d) Thallium
(I) sulphate, (e) Iron (III) sulphate, (f) Chromium (III) oxide.
Consider the reactions:
Why does the same reductant, thiosulphate react difforerently with iodine and bromine?
(a) Arrange the following in order of increasing O.N of iodine:
I2, HI, HIO2, KIO3, ICl.
(b) Identify the oxidant and reductant in the following redox reaction:
2K2Mn04 + Cl2 ———–> 2KCl + 2KMnO4
(a) Balance the following equation by oxidation number method or by ion electron (half reaction) method.
Fluorine reacts with ice and results in the change:
H20(S) + F2 (g) ——-> HF(g) + HOF(g)
Justify that this reaction is a redox reaction.
Consider the reactions:
(a) 6CO2(g) 6H2O(l) ———> C6H12O6(s) + 6O6(g) (b) O3(g) + H2O2(l) H2O(l) + 2O2(g)
Why it is more appropriate to write these reactions as:
(a) 6CO2(g) + 12H2O(l) ————-> C6H12O6(s) + 6H2O(l) + 6O2(g)
(b) O3(g) + H2O2 (l) ———–> H2O(l) + O2(g) + O2(g)
Also suggest a technique to investigate the path of above (a) and (b) redox reactions.
PbO and Pb02 react with HC1 according to following chemical equations:
2PbO + 4HCl → 2PbCl2 + 2H20
Pb02 + 4HC1 → PbCl2 + Cl2 + 2H20
Why do these compounds differ in their reactivity?
Calculate the oxidation number of sulphur, chromium and nitrogen in H2SO5, Cr2O2 and NOT. Suggest structure of these compounds. Count for the fallacy.
Whenever a reaction between an oxidising agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the reducing agent is in excess and a compound of higher oxidation state is formed if oxidising agent is in excess. Justify this statement giving three illustrations.
Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions.
In which of the following compounds, an element exhibits two different oxidation states.
(a) NH2OH
(b) NH4NO3
(c) N2H4
(d) N3H
Identify the correct statement(s) in relation to the following reaction:
Zn + 2HCl → ZnCl2 + H2
(a) Zinc is acting as an oxidant.
(b) Chlorine is acting as a reductant.
(c) Hydrogen ion is acting as an oxidant.
(d) Zinc is acting as a reductant.
Balance the following equations by the oxidation number method.
(i) Fe2+ + H+ + Cr2072- →Cr3+ + Fe3+ + H20
(ii) I2 + N0–3→ N02 +I03
(iii) I2 + S2032- →I– + S4062- ‘
(iv) MnO, + C2042-→ Mn2+ + CO2
Write Jour informations about the reaction:
(CN)2(g) + 2OH–(aq) —–> CN–(aq) + CNO–(aq) + H2O(l)
Given the standard electrode potentials,
K+/K = -2.93 V, Ag+/Ag = 0.80 V, Hg2+/Hg = 0.79 V, Mg2+/Mg = -2.37 V,
Cr3+/Cr = -0.74 V. Arrange these metals in increasing order of their reducing power.