Which of the following statements are correct? Answer on the basis of figure.
(a) The two bridged hydrogen atoms and the two boron atoms lie in one plane.
(b) Out of six B – H, bonds two bonds can be described in terms of 3 centre 2-electron bonds.
(c) Out of six B – H bonds four B – H bonds can be described in terms of 3 centre 2 electron bonds.
(d) The four terminal B – H bonds are two centre-two electron regular bonds.
(a, b, d) Each of the two boron atoms is in sp3-hybrid state. Of the four hybrid orbitals, three have one electron each while the fourth is empty. Two of the four orbitals of each, of the boron atom overlap with two terminal hydrogen atoms forming two normal B – H σ-bonds. One of the remaining hybrid orbitals (either empty or singly occupied) of one of the boron atoms, 15-orbital of H (bridge atom) and one of hybrid orbitals of the other boron atom overlap to form a delocalized orbital covering the three nuclei with a pair of electrons. This is three centre two electron bond. Similar overlapping occurs with the second hydrogen atom (bridging) forming three centre two electrons bond.
A certain salt X, gives the following results.
(i) Its aqueous solution is alkaline to litmus.
(ii) It swells up to a glassy material Y on strong heating.
(iii) When cone.H2SO4is added to a hot solution of X, white crystal of an acid Z separates out.
Give one method for industrial preparation and one for laboratory preparation of CO and C02 each.
The+1 oxidation state in group 13 and +2 oxidation state in group 14 becomes more and more stable with increasing atomic number. Explain.
Assertion (A): If aluminium atoms replace a few silicon atoms in three dimensional network of silicon dioxide, the overall structure acquires a negative charge.
Reason (R): Aluminium is trivalent while silicon is tetravalent.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) Both A and R are not correct.
(d) A is not correct but R is correct.
Elements of group 14
(a) exhibit oxidation state of +4 only (b) exhibit oxidation state of +2 and +4
(c) form M2-and M4+ ion (d) form M2+ and M4+ ions.
The geometry of a complex species can be understood from the knowledge of type of hybridisation of orbitals of central atom. The hybridisation of orbitals of central atom in [B(OH)4]- and the geometry of the complex are respectively
(a) sp3, tetrahedral
(b) sp3, square planar
(c) sp3d2, octahedral
(d) dsp2, square planar
In the structure of diborane
(a) all hydrogen atoms lie in one plane and boron atoms lie in a plane perpendicular to this plane.
(b) 2 boron atoms and 4 terminal hydrogen atoms lie in the same plane and 2 bridging hydrogen atoms lie in the perpendicular plane.
(c) 4 bridging hydrogen atoms and boron atoms lie in one plane and two terminal hydrogen atoms lie in a plane perpendicular to this plane.
(d) all the atoms are in the same plane.
What is meant by catenation? Why does ‘C show the property of catenation to maximum extent?
Give reasons:
(a) Why do Boron halides form addition compound with NH3?
(b) The tendency for catenation decreases down the group in Group 14.
(c) PbO2 is a stronger oxidising agent than SnO2.
What are electron deficient compounds? Are BCl3 and SiCl4 electron deficient species? Explain.
Give the chemical reactions as an evidence for each of the following observations.
(i) Tin (II) is a reducing agent whereas lead (II) is not.
(ii) Gallium (I) undergoes disproportionation reaction.
What happens when
(i) Quick lime is heated with coke?
(ii) Carbon monoxide reacts with Cl2?
(a) Why do Boron halides form addition compound with NH3?
(b) Assign appropriate reason for each of the following observations:-
(i) Anhydrous AlCl3 is used as a catalyst in many organic reactions.
(ii) No form of elemental silicon is comparable to graphite.
Catenation, i.e., linking •of similar atoms depends on size and electronic configuration of atoms. The tendency of catenation in Group 14 elements follows the order
(a) C > Si > Ge > Sn
(b) C » Si > Ge = Sn
(c) Si > C > Sn > Ge
(d) Ge > Sn > Si > C
A compound X, of boron reacts with NH3 on heating to give another compound Y which is called inorganic benzene. The compound X can be prepared by treating BF3 with lithium aluminium hydride. The compounds X and Y are represented by the formulas.
(a) B2H6,B3N3H6
(b) B203, B3N3H6
(c) BF3, B3N3H6
(d) B3N3H6 , B2H6
The linear shape of C02 is due to ______ .
(a) sp3 hybridisation of carbon
(b) sp hybridisation of carbon
(c) pπ-pπ bonding between carbon and oxygen
(d) sp2 hybridisation of carbon
Which of the following statements are correct?
(a) Fullerenes have dangling bonds.
(b) Fullerenes are cage-like molecules.
(c) Graphite is thermodynamically most stable allotrope of carbon.
(d) Graphite is slippery and hard and therefore used as a dry lubricant in
Assertion (A): Silicones are water repelling in nature.
Reason (R): Silicones are organosilicon polymers, which have (-R2SiO-) as repeating unit.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) Both A and R are not correct. ‘
(d) A is not correct but R is correct.
Explain why is there a phenomenal decrease in ionization enthalpy from carbon to silicon.
Boric acid is an acid because its molecule
(a) contains replaceable H+ ion
(b) gives up a proton.
(c)accepts OH–from water releasing proton.
(d) combines with proton from water molecule.
Ionisation enthalpy (∆ tH1 kJ mol-1) for the elements of Group 13 follows the order.
(a) B > A1 > Ga > In > T1
(b) B < A1 < Ga< In
(d) B > A1 < Ga > In < T1
The reason for small radius of Ga compared to Al is_________ .
(a) poor screening effect of d and f orbitals
(b) increase in nuclear charge
(c) presence of higher orbitals
(d) higher atomic number
Match the species given in Column I with properties given in Column II.
Column I | Column II |
(i) Diborane | (a) Used as a flux for soldering metals |
(ii) Gallium ‘ | (b) Crystalline form of silica |
(iii) Borax | (c) Banana bonds |
(iv) Aluminosilicate | (d) Low melting, high boiling, useful for measuring high temperatures |
(v) Quartz | (e) Used as catalyst in petrochemical industries |
What happens when
(a) Borax is heated strongly
(b) Boric acid is added to water
(c) Aluminium is treated with dilute NaOH
(d) BF3 is reacted with ammonia?
Explain the following reactions.
(a) Silicon is heated with methyl chloride at high temperature in the presence of copper.
(b) Silicon dioxide is treated with hydrogen fluoride.
(c) CO is heated with ZnO.
(d) Hydrated alumina is treated with aqueous NaOH solution.
Boric acid is polymeric due to
(a) its acidic nature (b) the presence of hydrogen bonds
(c) its monobasic nature (d) its geometry