Physics

Motion in a Straight Line

Question:

A vehicle travels half the distance L with speed V1 and the other half with speed v2, then its average speed is

 

Answer:

Let the vehicle travels from A to B. Distances, velocities and time taken are shown. To calculate average speed we will calculate total distance covered and will divide by time interval in which it covers that total distance.
ncert-exemplar-problems-class-11-physics-chapter-2-motion-in-a-straight-line-12

ncert-exemplar-problems-class-11-physics-chapter-2-motion-in-a-straight-line-13

 

previuos
next

Motion in a Straight Line

Q 1.

Read each statement below carefully and state with reasons and examples, if it is true or false; A particle in one-dimensional motion
(a) with zero speed at an instant may have non-zero acceleration at that instant.
(b) with, zero speed may have non-zero velocity.
(c) with constant speed must have zero acceleration,
(d) with positive value of acceleration must be speeding up.

Q 2.

In one dimensional motion, instantaneous speed v satisfies 0 < v < v0
(a )The displacement in time T must always take non-negative values.
(b) The displacement x in time T satisfies -v()T < x < v0
(c) The acceleration is always a non-negative number.
(d) The motion has no turning points.

Q 3.

Read each statement below carefully and state with reasons and examples, if it is true or false; A particle in one-dimensional motion
(a) with zero speed at an instant may have non-zero acceleration at that instant.
(b) with, zero speed may have non-zero velocity.
(c) with constant speed must have zero acceleration,
(d) with positive value of acceleration must be speeding up.

Q 4.

A lift is coming from 8th floor and is just about to reach 4th floor. Taking ground floor as origin and positive direction upwards for all quantities, which one of the following is correct?
(a) x < 0, v < 0, a > 0 (b) x > 0, v < 0, a < 0
(c) x > 0, v < 0, a > 0 (d) x > 0, v > 0, a < 0

Q 5.

In Exercises 3.13 and 3.14, we have carefully distinguished between average speed and magnitude of average velocity. No such distinction is necessary when we consider instantaneous speed and magnitude of velocity. The instantaneous speed is always equal to the magnitude of instantaneous velocity. Why?

Q 6.

A player throws a ball upwards with an initial speed of 29.4 ms-1.
(a) What is the direction of acceleration during the upward motion of the ball?
(b) What are the velocity and acceleration of the ball at the highest point of its motion?
(c) Choose the x = 0 m and t = 0 s to be the location and time of the ball at its highest point, vertically downward direction to be the positive direction of x-axis, and give the signs of position, velocity and acceleration of the ball during its upward, and downward motion.
(d) To what height does the ball rise and after how long does the ball return to the player’s hands? (Take g = 9.8 m s-2 and neglect air resistance).

Q 7.

The position-time (x -1) graphs for two children A and B returning from their school O to their homes P and Q respectively are shown in Fig. Choose the correct entries in the brackets below:
(a) (A/B) lives closer to the school than (B/A).
(b) (A/B) starts from the school earlier than (B/A).
(c) (A/B) walks faster than (B/A).
(d) A and B reach home at the (same/different) time.
(e) (A/B) overtakes (B/A) on the road (once/twice).

Q 8.

A ball is dropped and its displacement versus time graph is as shown (Displacement x from ground and all quantities are positive upwards).
(a) Plot qualitatively velocity versus time graph.
(b) Plot qualitatively acceleration versus time graph.
ncert-exemplar-problems-class-11-physics-chapter-2-motion-in-a-straight-line-34

 

Q 9.

A lift is coming from 8th floor and is just about to reach 4th floor. Taking ground floor as origin and positive direction upwards for all quantities, which one of the following is correct?
(a) x < 0, v < 0, a > 0 (b) x > 0, v < 0, a < 0
(c) x > 0, v < 0, a > 0 (d) x > 0, v > 0, a < 0

Q 10.

Figure gives the x-t plot of a particle executing one ¬dimensional simple harmonic motion. (You will learn about this motion in more detail in Chapter 14). Give the signs of position, velocity and acceleration variables of the particle at t = 0.3 s, 1.2 s, – 1.2 s.

Q 11.

A lift is coming from 8th floor and is just about to reach 4th floor. Taking ground floor as origin and positive direction upwards for all quantities, which one of the following is correct?
(a) x < 0, v < 0, a > 0                       (b) x > 0, v < 0, a < 0
(c) x >0, v <0, a >0                          (d) x >0, v >0, a <0

Q 12.

Two trains A and B of length 400 m each are moving on two parallel tracks with a uniform speed of 71 km h-1 in the same direction, with A ahead of B. The driver of B decides to overtake A and accelerates by 1 ms-1. If after 50 s, the guard of B just brushes past the driver of A, what was the original distance between them?

Q 13.

The velocity-time graph of a particle in one-dimensional motion is shown below. Which of the following formula are correct for describing the motion of the particle over the time interval from  t1 to t2?
ncert-solutions-class-11th-physics-chapter-3-motion-straight-line-28

Q 14.

A car moving along a straight highway with speed of 126 km h-1 is brought to a stop within a distance of 200 m. What is the retardation of the car (assumed uniform), and how long does it take for the car to stop?

Q 15.

ncert-exemplar-problems-class-11-physics-chapter-2-motion-in-a-straight-line-24

ncert-exemplar-problems-class-11-physics-chapter-2-motion-in-a-straight-line-25

ncert-exemplar-problems-class-11-physics-chapter-2-motion-in-a-straight-line-26

Q 16.

Figure gives the x-t plot of a particle executing one ¬dimensional simple harmonic motion. (You will learn about this motion in more detail in Chapter 14). Give the signs of position, velocity and acceleration variables of the particle at t = 0.3 s, 1.2 s, – 1.2 s.

Q 17.

Give example of a motion where x > 0, v < 0, a > 0 at a particular instant.

Q 18.

A man runs across the roof-top of a tall building and jumps horizontally with the hope of landing on the roof of the next building which is at a lower height than the first. If his speed is 9 m/s, the (horizontal) distance between the two buildings is 10 m and the height difference is 9 m, will he be able to land on the next building? (Take g = 10 m/s2)

Q 19.

In which of the following examples of motion, can the body be considered approximately a point object.
(a) A railway carriage moving without jerks between two stations.
(b) A monkey sitting on top of a man cycling smoothly on a circular track.
(c) A spinning cricket ball that turns sharply on hitting the ground.
(d) A tumbling beaker that has slipped off the edge of table.

Q 20.

In which of the following examples of motion, can the body be considered approximately a point object.
(a) A railway carriage moving without jerks between two stations.
(b) A monkey sitting on top of a man cycling smoothly on a circular track.
(c) A spinning cricket ball that turns sharply on hitting the ground.
(d) A tumbling beaker that has slipped off the edge of table.

Q 21.

A player throws a ball upwards with an initial speed of 29.4 ms-1.
(a) What is the direction of acceleration during the upward motion of the ball?
(b) What are the velocity and acceleration of the ball at the highest point of its motion?
(c) Choose the x = 0 m and t = 0 s to be the location and time of the ball at its highest point, vertically downward direction to be the positive direction of x-axis, and give the signs of position, velocity and acceleration of the ball during its upward, and downward motion.
(d) To what height does the ball rise and after how long does the ball return to the player’s hands? (Take g = 9.8 m s-2 and neglect air resistance).

Q 22.

Figure gives a speed-time graph of a particle in motion along a constant direction. Three equal intervals of time are shown. In which interval is the average acceleration greatest in magnitude? In which interval is the average speed greatest? Choosing the positive direction as the constant direction of motion, give the signs of v and a in the three intervals. What are the accelerations at the points A, B, C and D?

ncert-solutions-class-11th-physics-chapter-3-motion-straight-line-20

Q 23.

Figure shows the x-t plot of one-dimensional motion of a particle.
Is it correct to say from the graph that the particle moves in a straight line for t < 0 and on a parabolic path for t > 0? If not, suggest a suitable physical context for this graph.

ncert-solutions-class-11th-physics-chapter-3-motion-straight-line-15

Q 24.

A woman starts from her home at 9.00 am, walks with a speed of 5 km h-1 on a straight road up to her office 2.5 km away, stays at the office up to 5.00 pm, and returns home by an auto with a speed of 2.5 km  h-1. Choose suitable scales and plot the x-t graph of her motion.

Q 25.

The position-time (x -1) graphs for two children A and B returning from their school O to their homes P and Q respectively are shown in Fig. Choose the correct entries in the brackets below:
(a) (A/B) lives closer to the school than (B/A).
(b) (A/B) starts from the school earlier than (B/A).
(c) (A/B) walks faster than (B/A).
(d) A and B reach home at the (same/different) time.
(e) (A/B) overtakes (B/A) on the road (once/twice).

Q 26.

In Exercises 3.13 and 3.14, we have carefully distinguished between average speed and magnitude of average velocity. No such distinction is necessary when we consider instantaneous speed and magnitude of velocity. The instantaneous speed is always equal to the magnitude of instantaneous velocity. Why?

Q 27.

Figure gives the x-t plot of a particle in one-dimensional motion. Three different equal intervals of time are shown. In which interval is the average speed greatest, and in which is it the least? Give the sign of average velocity for each interval.

ncert-solutions-class-11th-physics-chapter-3-motion-straight-line-19

Q 28.

A man walks on a straight road from his home to a market 2.5 km away with a speed of 5 km h-1 .Finding the market closed, he instantly turns and walks back home with a speed of 7.5 km h-1 What is the  (a)Magnitude of average velocity, and  (b)Average speed of the man over the interval of time (i) 0 to 30 min. (ii) 0 to 50 min. (iii) 0 to 40 min? [Note: You will appreciate from this exercise why it is better to define average speed as total path length divided by time, and not as magnitude of average velocity. You  would not like to tell the tired man on his return home that his average speed was zero!]

Q 29.

A bird is tossing (flying to and fro) between two cars moving towards each other on a straight road. One car has a speed of 18 km/h while the other has the speed of 27 km/h. The bird starts moving from first car towards the other and is moving with the speed of 36 km/h and when the two cars were separated by 36 km. What is the total distance covered by the bird?

Q 30.

A ball is dropped from a height of 90 m on a floor. At each collision with the floor, the ball loses one tenth of its speed. Plot the speed-time graph of its motion between t =0 to 12 s.

Q 31.

Explain clearly, with examples, the distinction between:
(a) Magnitude of displacement (sometimes called distance) over an interval of time, and the total length of path covered by a particle over the same interval;
(b) Magnitude of average velocity over an interval of time, and the average speed over the same  interval. (Average speed of a particle over an interval of time is defined as the total path length divided by the time interval). Show in both (a) and (b) that the second quantity is either greater than or equal to the first. When is the equality sign true? [For simplicity, consider one dimensional motion only],

Q 32.

On a two-lane road, car A is travelling with a speed of 36 km h-1. Two cars B and C approach car A in opposite directions with a speed of 54 km h-1 each. At a certain instant, when the distance AB is equal to AC, both being 1 km, B decides to overtake A before C does. What minimum acceleration of car B is required to avoid an accident?

Q 33.

A three – wheeler starts from rest , accelerates uniformly with 1 m s-2 on a straight road for 10 s, and then moves with uniform velocity .plot the distance covered by the vehicle during the n th second (n=1,2,3……..) versus n. what do you expect this plot to be during accelerated motion: a straight line or a parabola?

Q 34.

A jet airplane travelling at the speed of 500 km h-1 ejects its products of combustion at the speed of 1500 km  h-1  relative to the jet plane. What is the speed of the latter with respect to an observer on the ground?

Q 35.

On a two-lane road, car A is travelling with a speed of 36 km h-1. Two cars B and C approach car A in opposite directions with a speed of 54 km h-1 each. At a certain instant, when the distance AB is equal to AC, both being 1 km, B decides to overtake A before C does. What minimum acceleration of car B is required to avoid an accident?

Q 36.

A boy standing on a stationary lift (open from above) throws a ball upwards with the maximum initial speed he can, equal to 49 m s-1. How much time does the ball take to return to his hands? If the lift starts moving up with a uniform speed of 5 m s-1 and the boy again throws the ball up with the maximum speed he can, how long does the ball take to return to his hands?

Q 37.

A man walks on a straight road from his home to a market 2.5 km away with a speed of 5 km h-1 .Finding the market closed, he instantly turns and walks back home with a speed of 7.5 km h-1 What is the  (a)Magnitude of average velocity, and  (b)Average speed of the man over the interval of time (i) 0 to 30 min. (ii) 0 to 50 min. (iii) 0 to 40 min? [Note: You will appreciate from this exercise why it is better to define average speed as total path length divided by time, and not as magnitude of average velocity. You  would not like to tell the tired man on his return home that his average speed was zero!]

Q 38.

A police van moving on a highway with a speed of 30 km h-1 fires a bullet at a thief s car speeding away in the same direction with a speed of 192 km h-1 . If the muzzle speed of the bullet is 150 ms-1 , with what speed does the bullet hit the thief s car? (Note: Obtain that speed which is relevant for damaging the thief s car).

Q 39.

Two stones are thrown up simultaneously from the edge of a cliff 200 m high with initial speeds of 15 ms-1 and 30 ms-1. Verify that the graph shown in Fig. correctly represents the time variation of the relative position of the second stone with respect to the first. Neglect air resistance and assume that the stones do not rebound after hitting the ground. Take g = 10 ms-2. Give the equations for the linear and curved parts of the plot.

ncert-solutions-class-11th-physics-chapter-3-motion-straight-line-25

Q 40.

In one dimensional motion, instantaneous speed v satisfies 0 < v < v0
(a )The displacement in time T must always take non-negative values.
(b) The displacement x in time T satisfies -v()T < x < v0
(c) The acceleration is always a non-negative number.
(d) The motion has no turning points.

Q 41.

The displacement of a particle is given by x = (t- 2)2 where x is in metres and t in seconds. The distance covered by the particle in first 4 seconds is
(a) 4 m
(b) 8 m                                        
(c) 12 m                                    
(d) 16 m

Q 42.

A uniformly moving cricket ball is turned back by hitting it with a bat for a very short time interval. Show the variation of its acceleration with time (Take acceleration in the backward direction as positive).

Q 43.

Figure shows the x-t plot of one-dimensional motion of a particle.
Is it correct to say from the graph that the particle moves in a straight line for t < 0 and on a parabolic path for t > 0? If not, suggest a suitable physical context for this graph.

ncert-solutions-class-11th-physics-chapter-3-motion-straight-line-15

Q 44.

Suggest a suitable physical situation for each of the following graphs:

ncert-solutions-class-11th-physics-chapter-3-motion-straight-line-17

Q 45.

On a long horizontally moving belt (Fig.), a child runs to and fro with n speed 9 km h-1 (with respect to the belt) between his father and mother located 50 a part on the moving belt. The belt moves with a speed of 4 km h-1 . For an observe a stationary platform outside, what is the
(a) Speed of the child running in the direction of motion of the belt?
(b) Speed of the child running opposite to the direction of motion of the belt?
(c) Time taken by the child in (a) and (b)?
Which of the answers alter if motion is viewed by one of the parents?
ncert-solutions-class-11th-physics-chapter-3-motion-straight-line-24

Q 46.

A graph of x versus t is shown in figure.

Choose the correct alternatives given below.
(a) The particle was released from rest at t =0
(b) At B, the acceleration a >0
(c) At C, the velocity and the acceleration vanish.
(d) Average velocity for the motion between Aand D is positive.
(e) The speed at D exceeds that at E
ncert-exemplar-problems-class-11-physics-chapter-2-motion-in-a-straight-line-19

Q 47.

Figure gives the x-t plot of a particle in one-dimensional motion. Three different equal intervals of time are shown. In which interval is the average speed greatest, and in which is it the least? Give the sign of average velocity for each interval.

ncert-solutions-class-11th-physics-chapter-3-motion-straight-line-19

Q 48.

A spring with one end attached to a mass and the other to a rigid support is stretched and released.
(a) Magnitude of acceleration, when just released is maximum.
(b) Magnitude of acceleration, when at equilibrium position, is maximum.
(c) Speed is maximum when mass is at equilibrium position.
(d) Magnitude of displacement is always maximum whenever speed is minimum

Q 49.

Give examples of a one-dimensional motion where
(a) the particle moving along positive x-direction comes to rest periodically and moves forward.
(b) the particle moving along positive x-direction comes to rest periodically and moves backward.

Q 50.

A man is standing on top of a building 100 m high. He throws two balls vertically, one at t = 0 and after a time interval (less than 2 seconds). The later ball is thrown at a velocity of half the first. The vertical gap between first and second ball is + 15 m at t = 2 s. The gap is found to remain constant. Calculate the velocity with which the balls were thrown and the exact time interval between their throw.