Match the graph between the following variables with their names.
Column I (Graphs) | Column II (Names) |
(i) Pressure vs temperature graph at constant molar volume. | (a) Isotherms |
(ii) Pressure vs volume graph at constant temperature. | (b) Constant temperature curve |
(iii) Volume vs temperature graph at constant pressure. | (c) Isochores |
(d) Isobars |
(i) →(c); (ii) → (a); (iii) → (d)
(i) Pressure vs temperature graph at constant volume – Isochores
(ii) Pressure vs volume graph at constant temperature – Isotherms
(iii) Volume vs temperature graph at constant pressure – Isobars
2.9 g of a gas at 95 °C occupied the same volume as 0.184 g of hydrogen at 17 °C at the same pressure. What is the molar mass of the gas ?
Give an expression for the van der Wools equation. Give the significance of the constants used in the equation. What are their units?
Which of the following figures does not represent 1 mole of dioxygen gas at STP?
(a) 16 grams of gas
(b) 22.7 litres of gas
(c) 6.022 x 1023 dioxygen molecules
(d) 11.2 litres of gas
Assertion (A): Gases do not liquefy above their critical temperature, even on applying high pressure.
Reason (R): Above critical temperature, the molecular speed is high and intermolecular attractions cannot hold the molecules together because they escape because of high speed.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.
Two different gases ˜A' and ˜9' are filled in separate containers of equal capacity under the same conditions of temperature and pressure. On increasing the pressure slightly, the gas ˜A' liquefies but gas ˜B' does not liquefy even on applying high pressure until it is cooled. Explain this phenomenon.
Compressibility factor, Z, of a gas is given as Z = PV/nRT
(i) What is the value of Z for an ideal gas?
(ii) For real gas what will be the effect on value of Z above Boyle's temperature?
Density of a gas is found to be 5.46 g/dm3 at 27 °C and at 2 bar pressure. What will be its density at STP?
A weather balloon has a volume of 175 dm3 when filled with hydrogen gas at a pressure of 1.0 bar. Calculate the volume of the balloon when it rises to a height where the atmospheric pressure is 0.8 bar. Assume that temperature is constant.
One of the assumptions of kinetic theory of gases states that "there is no force of attraction between the molecules of a gas."How far is this statement correct? Is it possible to liquefy an ideal gas? Explain.
The variation of vapour pressure of different liquids with temperature is shown in figure
(i) Calculate graphically boiling points of liquids A and B.
(ii) If we take liquid C in a closed vessel and heat it continuously, at what temperature will it boil?
(iii) At high altitude, atmospheric pressure is low (say 60 mm Hg). At what temperature liquid D boils?
(iv) Pressure cooker is used for cooking food at hill station. Explain in terms of vapour pressure why is it so?
Explain the term ‘laminar flow'. Is the velocity of molecules same in all the layers in laminar flow? Explain your answer.
(a) What do you mean by’Surface Tension'of a liquid?
(b) Explain the factors which can affect the surface tension of a liquid.
Pressure exerted by saturated water vapour is called aqueous tension. What correction term will you apply to the total pressure to obtain pressure of dry gas?
Pressure versus volume graphs for a real gas and an ideal gas are shown in the figure.
Answer the following questions on the basis of this graph.
(i) Interpret the behaviour of real gas with respect to ideal gas at low pressure.
(ii) Interpret the behaviour of real gas with respect to ideal gas at high pressure.
(iii) Mark the pressure and volume by drawing a line at the point where real gas behaves as an ideal gas.
Assertion (A): At constant temperature, PV vs V plot for real gases is not a straight line.
Reason (R): At high pressure all gases have Z> 1 but at intermediate pressure most gases have Z < 1.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.
Why does sharp glass edge become smooth on heating it up to its melting point in a flame? Explain which property of liquids is responsible for this phenomenon.
A vessel of 120 mL capacity contains a certain amount of gas at 35 °C and 1.2 bar pressure. The gas is transferred to another vessel of volume 180 mL at 35 °C. What would be its pressure?
What are ideal and real gases? Out of CO2 and NH3 gases, which is expected to show more deviation from the ideal gas behaviour?
Assertion (A): Three states of matter are the result of balance between intermolecular forces and thermal energy of the molecules. .
Reason (R): Intermolecular forces tend to keep the molecules together but thermal energy of molecules tends to keep them apart.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.
What will be the pressure of the gas mixture when 0.5 L of H2 at 0.8 bar and 2.0 L of dioxygen at 0.7 bar are introduced in all vessel at 27 °C?
Calculate the temperature of 4.0 moles of a gas occupying 5 dm3 at 3.32 bar (R = 0.083 bar dm3 K-1 mol-1)
The pressure of a mixture of H2 and N2 in a container is 1200 torr. The partial pressure of nitrogen in the mixture is 300 torr. What is the ratio of H2 and N2 molecules in the mixture?
The behaviour of matter in different states is governed by various physical laws. According to you what are the factors that determine the state of matter?
Assertion (A): At critical temperature liquid passes into gaseous state imperceptibly and continuously.
Reason (R): The density of liqtiid and gaseous phase is equal to critical temperature.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.
Why does the boundary between liquid phase and gaseous phase disappear on heating a liquid up to critical temperature in a closed vessel? In this situation what will be the state of the substance?
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30 °C?
At 0 °C, the density of a gaseous oxide at 2 bar is same as that of dinitrogen at 5 bar. What is the molecular mass of the oxide?
State and explain Dalton’s law of partial pressures. Can we apply Dalton's law of partial pressures to a mixture of carbon monoxide and oxygen?
(a) Why aerated water bottles kept under water during summer?
(b) Which property of liquid is responsible for spherical shape of drop?
(c) Why is moist air lighter than dry air?
(d) Define aqueous tension.
(e) What are units of a and b which are van der Waals constants?