The magnitude of surface tension of liquid depends on the attractive forces between the molecules. Arrange the following in increasing order of surface tension:
water, alcohol (C2H5OH) and hexane [CH3(CH2)4CH3)].
In the above given molecules, only hexane [CH3(CH2)4CH3] is a non-polar molecule in which only London dispersion forces exist. These forces are very weak while both water and ethanol are polar molecules in which dipole- dipole interactions as well as H-bonding exists.
However, since H-bonding interactions are much stronger in water than ethanol, therefore, it possesses stronger intermolecular forces than alcohol and hexane. Hence, the increasing order of surface tension is
Hexane < Alcohol < Water
Give an expression for the van der Wools equation. Give the significance of the constants used in the equation. What are their units?
2.9 g of a gas at 95 °C occupied the same volume as 0.184 g of hydrogen at 17 °C at the same pressure. What is the molar mass of the gas ?
Which of the following figures does not represent 1 mole of dioxygen gas at STP?
(a) 16 grams of gas
(b) 22.7 litres of gas
(c) 6.022 x 1023 dioxygen molecules
(d) 11.2 litres of gas
What will be the pressure of the gas mixture when 0.5 L of H2 at 0.8 bar and 2.0 L of dioxygen at 0.7 bar are introduced in all vessel at 27 °C?
Pressure versus volume graphs for a real gas and an ideal gas are shown in the figure.
Answer the following questions on the basis of this graph.
(i) Interpret the behaviour of real gas with respect to ideal gas at low pressure.
(ii) Interpret the behaviour of real gas with respect to ideal gas at high pressure.
(iii) Mark the pressure and volume by drawing a line at the point where real gas behaves as an ideal gas.
Assertion (A): Gases do not liquefy above their critical temperature, even on applying high pressure.
Reason (R): Above critical temperature, the molecular speed is high and intermolecular attractions cannot hold the molecules together because they escape because of high speed.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.
The pressure of a mixture of H2 and N2 in a container is 1200 torr. The partial pressure of nitrogen in the mixture is 300 torr. What is the ratio of H2 and N2 molecules in the mixture?
Which of the following changes decrease the vapour pressure of water kept in a sealed vessel?
(a) Decreasing the quantity of water
(b) Adding salt to water
(c) Decreasing the volume of the vessel to one-half
(d) Decreasing the temperature of water
Assertion (A): Three states of matter are the result of balance between intermolecular forces and thermal energy of the molecules. .
Reason (R): Intermolecular forces tend to keep the molecules together but thermal energy of molecules tends to keep them apart.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.
(a) What do you mean by’Surface Tension'of a liquid?
(b) Explain the factors which can affect the surface tension of a liquid.
A gas that follows Boyle's law, Charles' law and Avogadro's law is called an ideal gas. Under what conditions a real gas would behave ideally?
One of the assumptions of kinetic theory of gases states that "there is no force of attraction between the molecules of a gas."How far is this statement correct? Is it possible to liquefy an ideal gas? Explain.
The critical temperature (Tc) and critical pressure (Pc) of C02 are 30.98 °C and 73 atm respectively. Can C02(g) be liquefied at 32 °C and 80 atm pressure?
The variation of vapour pressure of different liquids with temperature is shown in figure
(i) Calculate graphically boiling points of liquids A and B.
(ii) If we take liquid C in a closed vessel and heat it continuously, at what temperature will it boil?
(iii) At high altitude, atmospheric pressure is low (say 60 mm Hg). At what temperature liquid D boils?
(iv) Pressure cooker is used for cooking food at hill station. Explain in terms of vapour pressure why is it so?
Compressibility factor, Z, of a gas is given as Z = PV/nRT
(i) What is the value of Z for an ideal gas?
(ii) For real gas what will be the effect on value of Z above Boyle's temperature?
Why does sharp glass edge become smooth on heating it up to its melting point in a flame? Explain which property of liquids is responsible for this phenomenon.
Under which of the following two conditions applied together, a gas deviates most from the ideal behaviour?
(a) Low pressure (b) High pressure
(c) Low temperature (d) High temperature
The magnitude of surface tension of liquid depends on the attractive forces between the molecules. Arrange the following in increasing order of surface tension:
water, alcohol (C2H5OH) and hexane [CH3(CH2)4CH3)].
Pressure exerted by saturated water vapour is called aqueous tension. What correction term will you apply to the total pressure to obtain pressure of dry gas?
Name the energy which arises due to motion of atoms or molecules in a body. How is this energy affected when the temperature is increased?
Assertion (A): At constant temperature, PV vs V plot for real gases is not a straight line.
Reason (R): At high pressure all gases have Z> 1 but at intermediate pressure most gases have Z < 1.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.
A mixture of dihydrogen and dioxygen at one bar pressure contains 20% by weight of dihydrogen. Calculate the partial pressure of dihydrogen.
Critical temperature for Co2 and CH4 are 31.1 °C and -81.9 °C respectively. Which of these has stronger intermolecular forces and why ?
At 25 °C and 760 mm ofHg pressure a gas occupies 600 mL volume. What will be its pressure at a height where temperature is 10 °C and volume of the gas is 640 mL?
One of the assumptions of kinetic theory of gases is that there is no force of attraction between the molecules of a gas.
State and explain the evidence that shows that the assumption is not applicable for real gases.
Assertion (A): At critical temperature liquid passes into gaseous state imperceptibly and continuously.
Reason (R): The density of liqtiid and gaseous phase is equal to critical temperature.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.
Explain the term ‘laminar flow'. Is the velocity of molecules same in all the layers in laminar flow? Explain your answer.
Isotherms of carbon dioxide gas are shown in figure. Mark a path for changing . gas into liquid such that only one phase (i.e. either a gas or liquid) exists at any time during the change. Explain how the temperature, volume and pressure should be changed to carry out the change.
A vessel of 120 mL capacity contains a certain amount of gas at 35 °C and 1.2 bar pressure. The gas is transferred to another vessel of volume 180 mL at 35 °C. What would be its pressure?
Density of a gas is found to be 5.46 g/dm3 at 27 °C and at 2 bar pressure. What will be its density at STP?
How much time would it take to distribute one Avogadro number of wheat grains if 1010 grains are distributed each second ?
Pay load is defined as the difference between the mass of the displaced air and the mass of the balloon. Calculate the pay load when a balloon of radius 10 m, mass 100 kg is filled with helium at 1.66 bar at 27 °C (Density of air = 1.2 kg m-3 and R = 0.083 bar dm3 K-1 mol-1).
Calculate the volume occupied by 8.8 g of CO2 at 31.1 °C and 1 bar pressure. R = 0.083 bar LK-1 mol-1
A weather balloon has a volume of 175 dm3 when filled with hydrogen gas at a pressure of 1.0 bar. Calculate the volume of the balloon when it rises to a height where the atmospheric pressure is 0.8 bar. Assume that temperature is constant.