Digital Signal Processing

Frequency Analysis of Discrete Time Signal

Question 1
Marks : +2 | -2
Pass Ratio : 100%
What is the Fourier transform X(ω) of a finite energy discrete time signal x(n)?
\\(\\sum_{n=-∞}^∞x(n)e^{-jωn}\\)
\\(\\sum_{n=0}^∞x(n)e^{-jωn}\\)
\\(\\sum_{n=0}^{N-1}x(n)e^{-jωn}\\)
None of the mentioned
Explanation:
If we consider a signal x(n) which is discrete in nature and has finite energy, then the Fourier transform of that signal is given as
Question 2
Marks : +2 | -2
Pass Ratio : 100%
Which of the following relation is true if the signal x(n) is real?
X*(ω)=X(ω)
X*(ω)=X(-ω)
X*(ω)=-X(ω)
None of the mentioned
Explanation:
We know that,
Question 3
Marks : +2 | -2
Pass Ratio : 100%
What is the expression for Fourier series coefficient ck in terms of the discrete signal x(n)?
\\(\\frac{1}{N} \\sum_{n=0}^{N-1}x(n)e^{j2Ï€kn/N}\\)
\\(N\\sum_{n=0}^{N-1}x(n)e^{-j2Ï€kn/N}\\)
\\(\\frac{1}{N} \\sum_{n=0}^{N+1}x(n)e^{-j2Ï€kn/N}\\)
\\(\\frac{1}{N} \\sum_{n=0}^{N-1}x(n)e^{-j2Ï€kn/N}\\)
Explanation:
We know that, the Fourier series representation of a discrete signal x(n) is given as
Question 4
Marks : +2 | -2
Pass Ratio : 100%
What is the equation for average power of discrete time periodic signal x(n) with period N in terms of Fourier series coefficient ck?
\\(\\sum_{k=0}^{N-1}|c_k|\\)
\\(\\sum_{k=0}^{N-1}|c_k|^2\\)
\\(\\sum_{k=0}^N|c_k|^2\\)
\\(\\sum_{k=0}^N|c_k|\\)
Explanation:
We know that Px=\\(\\frac{1}{N} \\sum_{n=0}^{N-1}|x(n)|^2\\)
Question 5
Marks : +2 | -2
Pass Ratio : 100%
What is the Fourier transform of the signal x(n)=u(n)?
\\(\\frac{1}{2sin⁡(ω/2)} e^{j(ω+π)}\\)
\\(\\frac{1}{2sin⁡(ω/2)} e^{j(ω-π)}\\)
\\(\\frac{1}{2sin⁡(ω/2)} e^{j(ω+π)/2}\\)
\\(\\frac{1}{2sin⁡(ω/2)} e^{j(ω-π)/2}\\)
Explanation:
Given x(n)=u(n)
Question 6
Marks : +2 | -2
Pass Ratio : 100%
Which of the following condition is to be satisfied for the Fourier transform of a sequence to be equal as the Z-transform of the same sequence?
|z|=1
|z|<1
|z|>1
Can never be equal
Explanation:
Let us consider the signal to be x(n)
Question 7
Marks : +2 | -2
Pass Ratio : 100%
What is the Fourier series representation of a signal x(n) whose period is N?
\\(\\sum_{k=0}^{N+1}c_k e^{j2Ï€kn/N}\\)
\\(\\sum_{k=0}^{N-1}c_k e^{j2Ï€kn/N}\\)
\\(\\sum_{k=0}^Nc_k e^{j2Ï€kn/N}\\)
\\(\\sum_{k=0}^{N-1}c_k e^{-j2Ï€kn/N}\\)
Explanation:
Here, the frequency F0 of a continuous time signal is divided into 2Ï€/N intervals.
Question 8
Marks : +2 | -2
Pass Ratio : 100%
If x(n) is a stable sequence so that X(z) converges on to a unit circle, then the complex cepstrum signal is defined as ____________
X(ln X(z))
ln X(z)
X-1(ln X(z))
None of the mentioned
Explanation:
Let us consider a sequence x(n) having a z-transform X(z). We assume that x(n) is a stable sequence so that X(z) converges on to the unit circle. The complex cepstrum of the signal x(n) is defined as the sequence cx(n), which is the inverse z-transform of Cx(z), where Cx(z)=ln X(z)
Question 9
Marks : +2 | -2
Pass Ratio : 100%
If cx(n) is the complex cepstrum sequence obtained from the inverse Fourier transform of ln X(ω), then what is the expression for cθ(n)?
\\(\\frac{1}{2π} \\int_0^π \\theta(ω) e^{jωn} dω\\)
\\(\\frac{1}{2π} \\int_{-π}^π \\theta(ω) e^{-jωn} dω\\)
\\(\\frac{1}{2π} \\int_0^π \\theta(ω) e^{jωn} dω\\)
\\(\\frac{1}{2π} \\int_{-π}^π \\theta(ω) e^{jωn} dω\\)
Explanation:
We know that,
Question 10
Marks : +2 | -2
Pass Ratio : 100%
If a power signal has its power density spectrum concentrated about zero frequency, the signal is known as ______________
Low frequency signal
Middle frequency signal
High frequency signal
None of the mentioned
Explanation:
We know that, for a low frequency signal, the power signal has its power density spectrum concentrated about zero frequency.