(a)What is a spontaneous process? Mention the conditions for a reaction to be spontaneous at constant temperature and pressure.
(b) Discuss the effect of temperature on the spontaneity of an exothermic reaction.
(a) A process is said to be spontaneous if it takes place by itself by own or under some condition.
∆G gives a criteria for spontaneity at constant temperature and pressure.
(b) If the temperature is so high that T∆S > ∆H in magnitude, ∆G will be positive and the process will be non-spontaneous.
If the temperature is made low so that T∆S < ∆H in magnitude, ∆G will be negative and the process will be spontaneous.
Consider the following reaction between zinc and oxygen and choose the correct options out of the options given below:
2Zn(s) + 02(g) → 2ZnO(s); ∆H=-693.8 kJ mol-1
(i) The enthalpy of two moles ZnO is less than the total enthalpy of two moles of Zn and one mole of oxygen by 693.8 kJ.
(ii) The enthalpy of two moles of ZnO is more than the total enthalpy of two moles of Zn and one mole of oxygen by 693.8 kJ.
(iii) 8 kJ mol -1 energy is evolved in the reaction.
(iv) 693.8 kJ mol-1 energy is absorbed in the reaction.
Give reason for the following:
(a)Neither q nor w is a state function but q + w is a state function.
(b)A real crystal has more entropy than an ideal crystal.
The entropy change can be calculated by using the expression ∆S = q rev / T. When water freezes in a glass beaker, choose the correct statement amongst the following:
When water freezes in a glass beaker, choose the correct statement amongst the following:
(a) ∆S(system) decreases but ∆S(surroundings) remains the same.
(b) ∆S(system) increases but ∆S(surroundings) decreases.
(C) ∆S(system) decreases but ∆S(surroundmgs) increases.
(d) ∆S(system) decreases but ∆S(surroundings) also decreases.
In an exothermic reaction, heat is evolved, and system loses heat to the surroundings. For such system
(a) qP will be negative
(b) ∆γHwill be negative
(c) qp will be positive
(d) ∆γHwill be positive.
The enthalpy of atomisation for the reaction CH4(g) → C(g) + 4H(g) is 1665 kJ mol-1. What is the bond energy of C – H bond?
The spontaneity means, having the potential to proceed without the assistance of external agency. The processes which occur spontaneously are
(a) flow of heat from colder to warmer body.
(b) gas in a container contracting into one comer.
(c) gas expanding to fill the available volume.
(d) burning carbon in oxygen to give carbon dioxide.
Define the following:
(i) First law of thermodynamics.
(ii) Standard enthalpy of formation.
1 g of graphite is burnt in a bomb calorimeter in excess of oxygen at 298 K and 1 atmospheric pressure according to the equation C(graphite) + 02 (g) —> C02 (g) During the reaction, temperature rises from 298 K to 299 K. If the heat capacity of the bomb calorimeter is 20.7 kJ/K, what is the enthalpy change for the above reaction at 298 K and 1 atm?
What is the enthalpy of formation of the most stable form of an element in its standard state?
When two moles of C2H6(g) are burnt, 3129 kj of heat is liberated. Calculate the heat of formation of C2H6(g). ∆fH for C02(g) and H20(l) are-393.5 and -286 kj mol-1 respectively.
In an adiabatic process, no transfer-of heat takes place between system and surroundings. Choose the correct option for free expansion of an ideal gas under adiabatic condition from the following.

How are internal energy change, free energy change and entropy change are related to one another?
Calculate the standard enthalpy of formation of CH3OH. from the following data:
(i) CH3OH(l) + 3/2 02 (g) ———-> CO2 (g) + 2H20 (l); ∆rH– = – 726kj mol-1
(ii) C(s) + 02(g) —————>C02 (g); ∆cH– = -393 kj mol-1
(iii) H2(g) + 1/202(g) —————->H20 (l); ∆fH– = -286 kj mol-1
Calculate the enthalpy change for the reaction: H2(g) + Cl2(g) ————-> 2HCl(g). Given that bond energies ofH-H, Cl- Cl and H-Cl bonds are 433, 244 and 431 kj mol-1 respectively.
A sample of 1.0 mol of a monoatomic ideal gas is taken through a cyclic process of expansion and compression as shown in the figure. What will be the value of ΔHfor the cycle as a whole?

Heat capacity (CP) is an extensive property but specific heat (c) is an intensive property. What will be the relation between Cp and c for 1 mol of water?
Although heat is a path function but heat absorbed by the system under certain specific conditions is independent of path. What are those conditions? Explain.
Which of the following is not correct?
(a) ∆G is zero for a reversible reaction.
(b) ∆G is positive for a spontaneous reaction
(c) ∆G is negative tor a spontaneous reaction
(d) ∆G is positive for a non-spontaneous reaction.
One mole of acetone requires less heat to vapourise than 1 mol of water. Which of the two liquids has higher enthalpy of vapourisation?
Heat has randomising influence on a system and temperature is the measure of average chaotic motion of particles in the system. Write the mathematical relation which relates these three parameters.
Expansion of a gas in vacuum is called free expansion. Calculate the work done and the change in internal energy when 1 litre of ideal gas expands isothermally into vacuum until its total volume is 5 litre.
The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are -890.3 KJ mol-1, – 393.5 KJ mol-1 and – 285.8 KJ mol-1 respectively. Enthalpy of formation of CHJg) will be
(i) – 74.8 KJ mol-1 (ii) – 52.27 KJ mol-1
(iii) + 74.8 KJ mol-1 (iv) + 52.26 KJ mol-1
Give a relation between entropy change and heat absorbed or evolved for a reversible reaction occurring at temperature T.
Why standard entropy of an elementary substance is not zero whereas standard enthalpy of formation is taken as zero?
Thermodynamics mainly deals with
(a) interrelation of various forms of energy and their transformation front one from to another.
(b) energy changes in the processes which depend only on initial and final states of the microscopic system containing a few molecules.
(c) how and at what rate these energy transformations are carried out.
(d) the system in equilibrium state or moving from one equilibrium state to another equilibrium state.
18.0 g of water completely vapourises at 100 °C and 1 bar pressure and the enthalpy change in the process is
40.79 kJ mol-1. What will be the enthalpy change for vapourising two moles of water under the same conditions? What is the standard enthalpy of vapourisation for water?
Increase in enthalpy of the surroundings is equal to decrease in enthalpy of the system. Will the temperature of system and surroundings be the same when they are in thermal equilibrium?
Identify the state functions and path functions out of the following: enthalpy, entropy, heat, temperature, work, free energy.
Calculate the enthalpy change on freezing of 1.0 mol of water at 10.0 °C to ice at – 10.0 °C. A, H = 6.03 KJ mot1 at 0 °C. Cp [H20(l)J = 75.3 J mol-1 K-1; Cp [H20(s)J = 36.8 J mol-1 K-1.
Enthalpy of combustion of carbon to carbon dioxide is – 393.5 J mol-1 .Calculate the heat released upon formation of 35.2 g of C02 from carbon and oxygen gas.